Latent diffusion models for survival analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latent diffusion models for survival analysis

We consider Bayesian hierarchical models for survival analysis, where the survival times are modeled through an underlying diffusion process, which determines the hazard rate. We show how these models can be efficiently treated by means of Markov chain Monte Carlo techniques.

متن کامل

Continuous Time Survival in Latent Variable Models

We describe a general multivariate, multilevel framework for continuous time survival analysis that includes joint modeling of survival time variables and continuous and categorical observed and latent variables. The proposed framework is implemented in the Mplus software package. The survival time variables are modeled with nonparametric or parametric proportional hazard distributions and incl...

متن کامل

Evaluation of Survival Analysis Models for Predicting Factors Infuencing the Time of Brucellosis Diagnosis

Background:Brucellosis or Malta fever is one of the most common zoonotic diseases in the world. In addition to causing human suffering and dire economic impact on animals, due to the high prevalence of Brucellosis in the western regions of Isfahan province, this study aimed to analyze effective factors in the time of Brucellosis diagnosis using parametric and semi-parametric mo...

متن کامل

Latent Variable Models for Hippocampal Sequence Analysis

VIRTUAL TUNING CURVES we only train the HMMs on spikes from PBEs; to determine if the inferred states encode position data, we compute virtual tuning curves in two ways: (A) by decoding RUN data using the PBE-only HMM, and then using the true position data to estimate a map from states to position, and (B) by using the Bayesian decoder to estimate position during PBEs, and to learn a map from t...

متن کامل

Mixture models: latent profile and latent class analysis

Latent class analysis (LCA) and latent profile analysis (LPA) are techniques that aim to recover hidden groups from observed data. They are similar to clustering techniques but more flexible because they are based on an explicit model of the data, and allow you to account for the fact that the recovered groups are uncertain. LCA and LPA are useful when you want to reduce a large number of conti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2010

ISSN: 1350-7265

DOI: 10.3150/09-bej217